Sum frequency generation and solid-state NMR study of the structure, orientation, and dynamics of polystyrene-adsorbed peptides.

نویسندگان

  • Tobias Weidner
  • Nicholas F Breen
  • Kun Li
  • Gary P Drobny
  • David G Castner
چکیده

The power of combining sum frequency generation (SFG) vibrational spectroscopy and solid-state nuclear magnetic resonance (ssNMR) spectroscopy to quantify, with site specificity and atomic resolution, the orientation and dynamics of side chains in synthetic model peptides adsorbed onto polystyrene (PS) surfaces is demonstrated in this study. Although isotopic labeling has long been used in ssNMR studies to site-specifically probe the structure and dynamics of biomolecules, the potential of SFG to probe side chain orientation in isotopically labeled surface-adsorbed peptides and proteins remains largely unexplored. The 14 amino acid leucine-lysine peptide studied in this work is known to form an alpha-helical secondary structure at liquid-solid interfaces. Selective, individual deuteration of the isopropyl group in each leucine residue was used to probe the orientation and dynamics of each individual leucine side chain of LKalpha14 adsorbed onto PS. The selective isotopic labeling methods allowed SFG analysis to determine the orientations of individual side chains in adsorbed peptides. Side chain dynamics were obtained by fitting the deuterium ssNMR line shape to specific motional models. Through the combined use of SFG and ssNMR, the dynamic trends observed for individual side chains by ssNMR have been correlated with side chain orientation relative to the PS surface as determined by SFG. This combination provides a more complete and quantitative picture of the structure, orientation, and dynamics of these surface-adsorbed peptides than could be obtained if either technique were used separately.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peptides Adsorbed on Hydrophobic Surfaces—A Sum Frequency Generation Vibrational Spectroscopy and Modeling Study

Sum frequency generation (SFG) vibrational spectroscopy has been used to characterize the interfacial structure of a series of model peptides at the hydrophobic polystyrene–buffer interface. The peptides contain two types of amino acids, one hydrophobic (X) and one hydrophilic (Y). Their sequences are Ac-XYYXXYXXYYXXYX-NH2 (XY14) and Ac-XYXYXYX-NH2 (XY7), respectively, where the X and Y combina...

متن کامل

Surface orientation of magainin 2: molecular dynamics simulation and sum frequency generation vibrational spectroscopic studies.

We combined molecular dynamics based free energy calculations with sum frequency generation (SFG) spectroscopy to study the orientational distribution of solvated peptides near hydrophobic surfaces. Using a simplified atomistic model of the polystyrene (PS) surface, molecular dynamics simulations have been applied to compute the orientational probability of an α-helical peptide, magainin 2, wit...

متن کامل

Solid-state NMR studies of the structure, dynamics, and assembly of beta-sheet membrane peptides and alpha-helical membrane proteins with antibiotic activities.

beta-Sheet antimicrobial peptides and alpha-helical channel-forming colicins are bactericidal molecules that target the lipid membranes of sensitive cells. Understanding the mechanisms of action of these proteins requires knowledge of their three-dimensional structure in the lipid bilayer. Solid-state NMR has been used to determine the conformation, orientation, depth of insertion, oligomerizat...

متن کامل

Predicting the orientation of protein G B1 on hydrophobic surfaces using Monte Carlo simulations

A Monte Carlo algorithm was developed to predict the most likely orientations of protein G B1, an immunoglobulin G (IgG) antibody-binding domain of protein G, adsorbed onto a hydrophobic surface. At each Monte Carlo step, the protein was rotated and translated as a rigid body. The assumption about rigidity was supported by quartz crystal microbalance with dissipation monitoring experiments, whi...

متن کامل

Investigation of molecular motion of Cl-adamantane in the nanoprous zeolite by 13C NMR dipolar dephasing and variable contact time measurements

Dipolar-dephasing method provides some information about the strength of dipolar coupling in solids. Dipolar dephasing technique measures the time for a polarized carbon nucleus to lose its magnetization once the proton locking field is terminated. The dynamics of guest molecules adsorbed within the cavities and channels of nonporouszeolite strongly depend on the structure and chemical composit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 30  شماره 

صفحات  -

تاریخ انتشار 2010